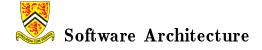
UNIVERSITY OF WATERLOO Software Architecture Series

Architecture Extraction Tools

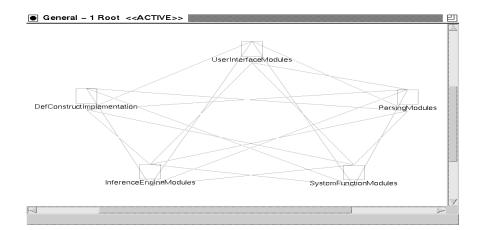
 $\begin{tabular}{ll} \bf Matt \ Armstrong \& \ Christopher \ Trudeau \\ \{\tt mnarmstr,ctrudeau\}@se.math.uwaterloo.ca \end{tabular}$

CITO'98

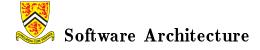

slides by SlickSlides

Outline

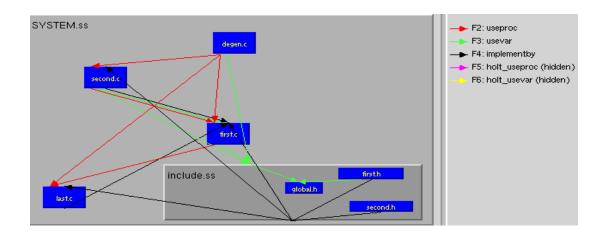
- introduction
- tool overview
- capabilities of tools
- compare and contrast
- conclusions


Introduction

- need to produce architectural designs
- many architecture extraction tools but little comparison work done
- examining five tools:
 - 1. Rigi University of Victoria
 - 2. **SNiFF**+ TakeFive Software
 - 3. **PBS** University of Toronto
 - 4. CIA AT&T Research
 - 5. **Dali** SEI (CMU)
- comparing tools in three areas:
 - 1. extraction extract details into relations
 - 2. classification combine relations into more abstract components
 - 3. visualization observe conceptual interpretation of source

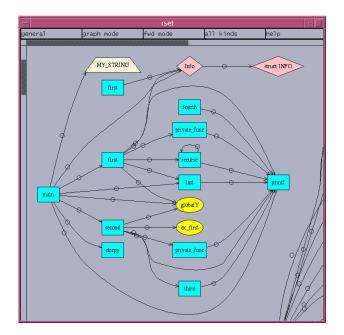

Rigi

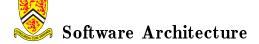
- "robust" C language extractor rigiparse (also has C++ & COBOL)
- rigiedit graph program
- "collapse" function allows grouping of nodes into hierarchies
- provides "spring" & "Sugiyama" layout algorithms
- filtering based on information in nodes helps classification


SNiFF+

- commercial product
- superb extractor for C, C++, Java, IDL, Embedded SQL, and Fortran (77 & 90)
- excellent as a source browser
- supports revision control systems, external documentation sources, project configuration & management, and a difference engine
- provides API so custom software can issue queries

PBS


- CFX (C Fact Extractor) for parsing requires compilable code
- tuple manipulation tool, Grok, excellent for classification assistance
- Java-based lsedit allows visualization of systems
- can link external documents and hyper-link nodes to other software typically calls subsystem views



CIA

- cia for parsing requires compilable code
- entity, relationship, and directory based
- graphical tool dotty
- ciao query-by-example interface for finding information in code

Dali

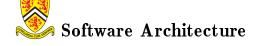
- an open prototype workbench comprising external extractors, POSTGRES data repository, and the Rigi user interface
- SQL query interface for classifying and manipulating information
- provides a rich set of Perl scripts to aid in extraction combination and transformation into the POSTGRES database

Extraction

	SNiFF+	Rigi	PBS	CIA	Dali
Hides system library calls	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
Extern globals	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$
Non-extern globals	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
Contents of structures	$\sqrt{}$				
Handles address of fn.	$\sqrt{}$			$\sqrt{}$	
Fn. ptr. deref'd as a call					
Conditional compilation		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
Macros	$\sqrt{}$				
Recursion	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
Multiple static functions	$\sqrt{}$			$\sqrt{}$	
Local variables	$\sqrt{}$				
Multiple prototypes	$\sqrt{}$				$\sqrt{}$

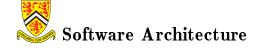
Classification

- CIA and SNiFF+ support information queries only
- Rigi:
 - pattern matching utilities
 - manual groupings through the "collapse" function
 - Tcl/Tk interface custom manipulation of Rigi
- PBS:
 - Grok scripts provided for file and subsystem level extraction
 - subsystem classification must be done before hand in data files not in GUI
 - no integration of classification and visualization
- Dali:
 - augments Rigi's capabilities
 - provides SQL interface to query information from the POSTGRES database
 - several SQL scripts provided for classification up to file level, but none for subsystem



Visualization

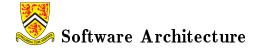
	SNiFF+	Rigi	PBS	CIA
Nodes type	t	С	С	CS
Move nodes		$\sqrt{}$	$\sqrt{}$	
Node hierarchies		$\sqrt{}$	$\sqrt{}$	
Bidirectional edges			$\sqrt{}$	
Edge type		С	С	
Edges use inflection pts				
Avoids cross over				
Scroll	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Zoom	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Annotation			$\sqrt{}$	
Multiple views			$\sqrt{}$	
Saving	$\sqrt{}$		$\sqrt{}$	


Extraction

- SNiFF+ and Rigi provide the most robust parsing capabilities
- only SNiFF+ and Rigi support multiple languages
 - CIA has a C++ version coming
 - lack of support for typical legacy languages
- information overload in PBS and CIA
- compilation requirement in CIA and PBS
- false positives in Rigi, PBS, and Dali's use of SNiFF+
- all relatively easy to use; SNiFF+ is the only one that uses a GUI

Classification

- problem of classification requires both domain knowledge and specific expertise with the software in question – very difficult to automate
- CIA and SNiFF+ provide query info only mostly useless for real systems
- file level abstraction tools provided by PBS and Dali
- Rigi provides pattern matching which is only useful in a limited set of cases
- PBS's classification is done at the data file level can not manipulate subsystems in the GUI
- Rigi provides an interface for using Tcl/Tk
- Dali requires knowledge of SQL
- both PBS and Dali provide some automated scripts
- Dali does not currently provide subsystem decomposition scripts


Visualization

all can scroll, SNiFF+ can't zoom

- 1) A B
- none take advantage of bidirectional relationships
- all have static anchor points

- lines can cross through nodes in everything but SNiFF+
- CIA uses curved lines with 2 inflection points nice diagrams, but this may be one of the reasons it is so slow
- static layout in CIA and SNiFF+
- document linking in SNiFF+, Rigi and PBS
- Rigi provides layout algorithms
- both Rigi and PBS allow hierarchical diagrams
 - Rigi only has one type of "collapsed" node and arc
 - PBS can not manipulate hierarchy in the GUI

Conclusions

- PBS and Dali provide the most features for architecture abstraction
- almost all of the visualization systems need work an amalgamation of good features from all of the tool sets would be beneficial
- SNiFF+ and CIA are poor tools for architecture extraction, but SNiFF+ is very good at what it was intended
- Rigi provides a rich graphical tool set but is lacking when it comes to classification
- PBS and Dali have equivalent classification capabilities